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In a recent study, Gedamke and Hoenig (2006) derived the transitional form of a 

mean length mortality estimator for application in non equilibrium conditions.  This 

extension of the Beverton and Holt mortality estimator (1956, 1957) has the same limited 

data requirements as in the previous formulation and, as such, has the potential for 

widespread use. The only required information is the von Bertalanffy growth parameters 

K and L∞, the so-called length of first capture (smallest size at which animals are fully 

vulnerable to the fishery and to the sampling gear), Lc, and the mean length of the 

animals above the length Lc.  Unlike the Beverton and Holt mortality estimator (1956, 

1957), however, the assumption of equilibrium conditions is not a requirement of the 

Gedamke and Hoenig (2006) approach.  The methodology and an application to 

goosefish are described in detail in Gedamke and Hoenig (2006) and a summary of the 

approach and an application to mutton snapper is described in SEDAR14-AW-05.   

In this study, we develop an approach to incorporate information from a time-

series of catch indices into the mean length estimator to both better detect changes in 

mortality, and to estimate total mortality rates.  The motivation to pursue this research 

stemmed from the application of the Gedamke and Hoenig (2006) approach to mutton 

snapper, the high variability of available mean length data, and the resulting uncertainty 

in total mortality estimates (see SEDAR14-AW-05).  Theoretically this proved 

interesting as catch rates alone can not be used to estimate absolute total mortality rates.   

To explain, let us first consider what information catch rates can tell us about total 

mortality in the simplest scenario when we assume equilibrium conditions, constant 

recruitment (R), and a constant catchability coefficient (q).   The catch index (I) will be a 
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function of the probability of an individual being captured by one unit of effort (q) and 

the abundance (N) as; 

 

  I q N= ⋅   .     (1) 

 

Assuming constant recruitment and that total mortality (Z) is constant with age, then 

abundance will be related to total mortality as (Ricker, 1975), 

 

                 RN
Z

= .      (2) 

 

By substitution of eqn (2) into (1) we get 

 

 *         q R qI
Z Z
⋅

= =      (3) 

 

where  now represents an unknown scaling parameter that includes both the 

catchability coefficient (q) and recruitment (R).  Thus, unless q*  (ie. both q and R) is 

known, catch rates (I

*q

1 and I2)   from two different mortality levels (Z1 and Z2), 
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can tell us the relative change in total mortality rates if q* is assumed to be constant, 
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In real world situations, obtaining reliable estimates of both q and R is extremely rare, 

therefore estimating absolute values of total mortality from catch rates alone is unlikely.   

However, since there is information on relative mortality rates we can incorporate this 

into our length-based non equilibrium mortality estimator. 

 To accomplish this in a non equilibrium framework we must first recognize that 

overall abundance, and the corresponding catch index, will not respond instantaneously 

to changes in total mortality. Equation 3 will only reflect the new mortality rate when 

enough time has passed for the new equilibrium age structure to be achieved.  Using the 

derivations in Gedamke and Hoenig (2006) we can calculate a relative abundance, in non 

equilibrium conditions, d years after a permanent change in total mortality from Z1 to Z2 

yr-1.  Let g = tc + d where tc is the age at which animals become recruited to the gear. The 

catch index (Id) in the population d years after the change in mortality will be equal to,  

 

 *d dI q N= ⋅        with Nd calculated as, 

2 2 1exp( ( )) exp( )exp( ( ))
c

g

d c
t g

N Z t t dt Z d Z t g dt
∞

= − − + − − −∫ ∫      .       (6) 

 

The integral on the left represents fish recruited after the change in mortality – these 

animals have experienced just the mortality rate Z2. The integral on the right represents 

fish that were recruited before the change in mortality – these fish have experienced both 
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the old and the new mortality rates.  To illustrate the calculations in equation (6), 

consider Figure 1 where the response of catch indices to a hypothetical change in total 

mortality from 0.2 yr-1 to 0.4 yr-1 is presented.  Note that the values on the y-axis are 

scaled by q* so the absolute values are directly related to recruitment (R) and the 

catchability coefficient (q).   

 

After integration and simplification equation (6) becomes 

 

dN − − −
= +

+ − −
=

2 2

2 1

1 2 1 2

1 2

1 exp( ) exp( )

( )exp( )

Z d Z d
Z Z

Z Z Z Z d
Z Z

   .   (7) 

 

The equation can be modified to incorporate multiple changes in mortality (see 

generalized equation in appendix B of Gedamke and Hoenig, 2006).  

 

Integrating catch rates and mean lengths 

 Now that we have laid the groundwork for predicting the relative change in catch 

rates we can begin to construct a model which incorporates both changes in mean lengths 

and changes in catch rates.  We use the method of maximum likelihood estimation to 

estimate the year of change and the values of Z1 and Z2 that cause predicted mean lengths 

and catch rates to best match the corresponding time series of data.  The probability 

density function of a normally distributed sample mean x , when the sample size is m, is 
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The product likelihood function (Λ ) for n years of observations (generalized in terms of 

observed and predicted for application to both mean lengths and indices) is thus, 
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The log-likelihood is proportional to   
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To incorporate changes in catch rates and changes in mean lengths we constructed the 

joint likelihood function as  
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The left (or top) part of the function is for the mean lengths where ml,y is the number of 

fish greater than size Lc measured in year y (or, as is the case for mutton snapper, the 

number measured on each interview record; a decimal year value is used to correspond to 

the sampling date), yL  is the observed mean length in year y, and Lpred,y is the predicted 
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mean length as computed in Gedamke and Hoenig (2006).  The right (or bottom) part of 

the function is for the catch rates where mi,y  is the number of observations used to 

calculate the index in year y, Iy is the index in year y, and Ipred,y is the index as predicted 

by equation  (7).    

Equation (11) was maximized, and confidence intervals generated for each 

variable, using the PROC NLP procedure in SAS version 8 (SAS, 1999).  Note that 

including the catch rate data, in addition to the mean length data, required two additional 

parameters to be estimated:  q* in equation (6) and a standard deviation ( iσ ) for the 

catch data.   Initially the year in which the mortality change occurred was specified and 

q*, Z1, Z2, and the population standard deviations for both mean length and catch rate 

data ( lσ , iσ ) were estimated.  Once the model proved capable of estimating those 5 

parameters from the data, the year of change was also estimated along with the other 

parameters.   Extensive grid searches were conducted over starting estimates for 

parameters to insure that local maxima were not being identified and the solutions 

presented represented the best fit of the model to the data.   

 

Application to the mutton snapper pot fishery in Puerto Rico 

The application of the Gedamke and Hoenig (2006) approach is described in 

detail in SEDAR14-AW-05 and only a brief description and pertinent results will be 

repeated here.  Only the pot fishery of Puerto Rico contained enough information to 

conduct an analysis and those results are presented in Tables 1a and 1b.  The results 

presented from the previous analysis and those of the current study are on the revised 
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data set which was modified by the removal of three inconsistent data points (see 

Revision of SEDAR14-AW-05 document). 

The first step, as described in SEDAR14-AW-05, was to obtain the estimate of 

length at full vulnerability (Lc) of 30 cm.  Mean lengths were then calculated by 

interview day from all individuals greater than Lc.  Standardized catch rates for the Puerto 

Rico pot fishery were taken from the Addendum to the SEDAR-DW-01 report; which 

were updated to include 2006 observations. The log likelihood function for mean lengths 

and catch rates was first constructed assuming one change in mortality and estimates for 

the unknown parameters were generated (Table 2).  Note that unlike the mean length only 

approach (Table 1), the likelihood function was always weighted by sample size as 

significant differences in sample sizes in mean lengths and catch rates were present.  

Mortality was estimated to have increased from 0.47 yr-1 to 0.80 yr-1 by the end of 1988 

(i.e. 1988.9).  Confidence intervals were relatively narrow for both the year of change 

(1987-1991) and for the first level of mortality (0.42 yr-1 – 0.53 yr-1), and less so for the 

second level of mortality (0.63 yr-1 – 0.96 yr-1).   

An examination of the predicted versus observed values showed a clear pattern to 

the residuals in the catch indices (Figure 2 and Figure 3) suggesting that the model did 

not fit the data well.  Thus, the likelihood was reformulated to include an additional 

change in mortality and parameters were estimated again.  Note that the penalty for 

increasing the complexity of the model was the need to estimate two additional 

parameters:  Z3, and the second year of change.  Estimates of the first year of change and 

the initial mortality rate (first change = 1989, Z1 = 0.47 yr-1) remained virtually 

unchanged from those of the simpler model.  The initial magnitude of change, however, 
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was estimated to be more substantial with mortality increasing to 1.21 yr-1 rather than our 

earlier estimate of 0.80 yr-1 (Table 3).   A second change in mortality was detected in 

1998 and mortality was estimated to have been reduced to 0.50 yr-1.  Confidence intervals 

for both years of change and the initial mortality rate were relatively narrow, while those 

of the Z1 and Z2 indicate some uncertainty in these estimates (Table 3).  An examination 

of the residuals showed that mean lengths tended to be overestimated after 1998 while the 

obvious pattern to the residuals of the indices in the one break model was largely 

removed (Figure 4 and Figure 5).   The objective function was reduced by 6.5 which was 

shown to be significant (P=0.0015) given the two additional parameters.   

A comparison of the results from the mean length only and the model with the 

catch rates integrated into the estimation process is interesting.  The mean length only 

model predicted the same initial increase in mortality rates but when an additional change 

in mortality was added, the improvement in the objective function was not significant.  

There simply wasn’t enough information in the mean length data to justify the including 

two additional parameters and even though there appeared to be a decrease around 1999, 

this estimate could not be deemed reliable (see Table 1).  Incorporating the catch indices 

proved successful even with the penalty of having to estimate two additional parameters 

(q, and a second standard deviation).   

Although the predicted catch indices track the observed values relatively well, the 

high variability of mean length data results in some uncertainty surrounding the estimates 

of total mortality since 1990 (Z2 and Z3).  This is expected when we consider that the 

clear trend in the catch indices will only provide information on the relative change in 

mortality and information from the mean lengths is required to estimate the absolute 
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mortality rates.  Thus, the variability of the mean length data is reflected in the 

uncertainty in the absolute estimates of total mortality in the most recent time periods.   

There is also some disagreement in the signals from the catch and mean length 

data that is apparent when we look at the residuals for both data sets.  For the catch 

indices, there is no pattern following 1998 but between 1990 and 1998 the predicted 

indices are always slightly greater than the observed values.  For the mean lengths also, 

the predicted values are greater than a majority of the observed values.  This reflects the 

conflicting information that is present between the data sets and the resulting estimates 

are essentially splitting the difference.  In essence, the catch indices are indicating a 

greater relative reduction in total mortality than is supported by the information in the 

mean length data.  This can be seen in a side by side comparison of the previous mean 

length only analysis and the current results (Figure 6).  Although a second change in both 

analyses suggests a reduction in mortality the magnitude of this change is markedly 

different.  Deciding which estimate is appropriate is extremely difficult given the 

variability of the mean length data.  Alternate weighting schemes may be appropriate if 

we can quantify the reliability of each data sets.  The range of estimates presented here 

should be used cautiously while slightly more weight can be given to the historical 

pattern of total mortality.  Reliable estimates of total mortality from this approach will 

only be possible through a more intensive standardized sampling program that includes 

length frequency data.    
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Table 1a.  Total mortality rates for the pot fishery of Puerto Rico as estimated from the 

mean length approach assuming one change in mortality (from revised SEDAR14-AW-

05).   

 

Mean Lengths 
computed by: 

Function 
weighted by 
Sample Size 

Estimated First 
Mortality Rate 

(ZONE) 

Estimated Second 
Mortality Rate 

ZTWO

Estimated Year 
of Change 

Year No 0.457 0.969 1992.78 
Year Yes 0.476 0.946 1992.65 

Month No 0.434 0.848 1987.96 
Month Yes 0.477 0.955 1993.65 

Interview Day No 0.392 0.845 1988.52 
Interview Day Yes 0.476 0.955 1993.60 

 
 
 
 
 
 
 
 
 
Table 1b.   Results of the mean length only model that includes two changes in mortality 
and three different total mortality rates.  Note that model fit was not improved 
significantly (through a likelihood ratio test) by the addition of the two new parameters. 
However there is some indication in the weighted model that total mortality may have 
been reduced around 1999 (from revised SEDAR14-AW-05).    
 

 

Mean 
Lengths 

computed by: 

Function 
weighted 

by 
Sample 

Size 

Estimated 
First 

Mortality 
Rate 

(ZONE) 

Estimated 
Second 

Mortality 
Rate 

(ZTWO)

Estimated 
Third 

Mortality 
Rate 

(ZTHREE)

Estimated 
First 

Year of 
Change 

Estimated 
Second 
Year of 
Change 

Year No 0.47 0.00 0.98 1991.02 1992.20 
Year Yes 0.48 1.18 0.73 1993.21 1998.84 

Month No 0.48 0.00 0.86 1985.54 1987.11 
Month Yes 0.48 1.17 0.75 1993.90 1999.30 

Interview Day No 0.39 0.70 0.89 1987.79 1994.50 
Interview Day Yes 0.48 1.17 0.76 1993.84 1999.25 
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Table 2.  Results of model assuming one change in mortality and incorporating both 

mean lengths and catch data.  SD is population standard deviation.   

 

   Confidence Intervals 
Parameter Estimate Std Err Lower Upper 

     
Zone 0.474 0.028 0.418 0.529 

Ztwo 0.798 0.084 0.633 0.963 
Change Year (/100) 19.889 0.010 19.869 19.909 

q* 0.839 0.138 0.569 1.108 

Mean Lengths SD 13.017 0.514 12.010 14.023 

Index SD 39.115 6.902 25.587 52.642 
 

Objective function value = -1058.154609 
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Table 3.  Results of model assuming two changes in mortality and incorporating both 

mean lengths and catch data.  SD is population standard deviation.   

 

   Confidence Intervals 
Parameter Estimate Std Err Lower Upper 

     
Zone 0.472 0.029 0.415 0.529 
Ztwo 1.210 0.227 0.765 1.655 
Zthree 0.501 0.084 0.336 0.665 
First Change Year  (/100) 19.889 0.005 19.880 19.899 
Second Change Year (/100) 19.982 0.007 19.968 19.997 
q* 0.825 0.112 0.606 1.045 
Mean Lengths SD 13.293 0.538 12.239 14.347 
Index SD 17.947 4.364 9.394 26.500 
 

Value of Objective Function = -1051.675646 
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Figure 1.  Response of catch indices to a 100% increase in total mortality from 0.2 to 0.4 

yr-1.  Note that the values on the y-axis are scaled by q* so the absolute values are 

directly related to recruitment (R) and the catchability coefficient (q).   

 

I1 = 2 · I2 

because 
Z2 = 2 · Z1 
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Figure 2.  A)  Predicted versus observed mean lengths, and residuals (B) for each 

interview record assuming two changes in mortality and incorporating both mean 

length and catch data.   
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Figure 3.  A)  Predicted versus observed indices, and residuals (B) for each year 

assuming one change in mortality and incorporating both mean length and catch 

data.   
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Figure 4.  A)  Predicted versus observed mean lengths, and residuals (B) for each year 

assuming two changes in mortality and incorporating both mean length and catch 

data.   

 18



0

0.5

1

1.5

2

2.5

1990 1994 1998 2002 2006

Year

C
at

ch
 In

de
x

Observed Index
Predicted Index  A 

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1990 1994 1998 2002 2006

Year

R
es

id
ua

ls

B 

 

Figure 5.  A)  Predicted versus observed indices, and residuals (B) for each year 

assuming two changes in mortality and incorporating both mean length and catch 

data.   
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Figure 6.  Results of both the mean length only analysis and the analysis which 

incorporates catch rates into the estimation process.  In both cases, results for 

when the model assumes either one or two changes in mortality are presented. 
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